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Development and Application of Global-through-Urban Weather 
Research and Forecasting Model with Chemistry (GU-WRF/Chem):

Hypotheses, Objectives, and Scientific Questions

• Hypothesis
– Climate change (CC) - air quality (AQ) feedbacks are important

• Objectives and Tasks
– Develop a unified online-coupled model for integrated CC-AQ modeling
– Conduct global-through-urban simulations for current/future scenarios
– Replicate/quantify CC-AQ feedbacks and examine model uncertainties 
– Guide the win-win strategy for integrated CC mitigation and AQ control

• Scientific Questions 
– What are the important feedbacks of urban/regional air pollutants to CC?
– How can CC and emission control affect urban/regional AQ?
– What are key uncertainties associated with predicted effects/feedbacks?



Development and Application of Global-through-Urban Weather Research 
and Forecasting Model with Chemistry (GU-WRF/Chem)

Model Development and Application Activities
• Key Model Development

– Globalize WRF/Chem 
– Compile global emissions (MOZART4, RETRO, IPCC, AeroCom); project 

future-year emissions based on IPCC A1B
– Develop/improve model treatments for global-through-urban applications

– Incorporate SAPRC99/CB05/CB05_GE, MADRID, FN05, & nucleation
– Couple gaseous mechanisms with default and new aerosol/cloud modules
– Add/improve other treatments (e.g., FTUV, dust, SOA, plume-in-grid)

• Model Evaluation of Current-Year (2001) Simulations
– Met: T, QV, Precip, Radiation from NCEP/NCAR, NCDC, CMAP, TRMM, BSRN
– Chem: O3 and PM2.5 from CASTNET, STN, IMPROVE, AIRS-AQS, SEARCH 

column CO, NO2, and TOR from MOPITT, GOME, OMI, TOMS/SBUV
– Other: AOD, CCN, CDNC, Cloud Fraction, COT, CER from MODIS

• Model Intercomparison and Trend Analysis of Future-Year Simulations
– Intercomparison: 2050 GU-WRF/Chem vs. 2046-2055 10-yr average CCSM
– Trend Analysis: 2010, 2020, 2030, 2040, and 2050 vs. 2001



Development and Incorporation of CB05 for Global 
Extension (CB05_GE) into GU-WRF/Chem

• Box Model Test
– Four conditions: urban, upper troposphere, lower stratosphere, and Arctic
– Several scenarios: NoClBr – no halogen chemistry (blue), ClBr – with full 

halogen chemistry (red), NoBr – with chlorine chemistry (green)

• A Total of 120 New Reactions in CB05_GE
– 5 stratospheric reactions (O2, N2O, O1D)
– 78 reactions for 25 halogen species (48 for 14 Cl and 30 for 11 Br species)
– 4 mercury reactions (Hg(0) and Hg(II))
– 13 heterogeneous reactions on aerosol/cloud and 20 reactions on PSCs
– H2O, CH4, CO2, O2 and H2 are treated as chemically-reactive species

Arctic
(March)

O3 Hg(II)Hg(0)



Simulated Aerosol Activation Fractions as a Function of Parcel 
Temperature and Updraft Velocity:

Uncertainty in Aerosol Activation Parameterizations
• Two Activation Parameterizations

Abdul Razzak-Ghan 2000 (AR-G00) (Default in WRF/Chem)
 Fountoukis-Nenes 2005 (F-N05)

• Box Model Test
 Single aerosol type (sulfate), with a modal representation with 3 modes
 Identical CCN spectrum in AR-G00 and F-N05
 3 conditions: Marine (Type 1), Continental (Type 2), Remote Marine (Type 3)
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Aerosol activation fractions differ by up to a factor of 4
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Simulated Nucleation Rates as a Function of NH2SO4
Uncertainty in Nucleation Parameterizations

Nucleation rates differ by > 16 orders of magnitude 
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Nested GU-WRF/Chem Simulations
(Base Configurations: FTUV/CB05GE/MADRID/CMU/AR-G, 27 layers from 

1000-50 mb)

• Domain: D01: 4˚ × 5˚, 45 (lat.) × 72 (long.) (Global)
D02: 1.0˚ × 1.25˚, 44 × 192  (Trans-Pacific) 
D03-CONUS: 0.33˚ × 0.42˚, 84× 168 (CONUS)
D03-China: 99× 177 (China)
D04: 0.08˚ × 0.10˚, 136× 144 (E. US)

D01: Global    D02: Trans-Pacific   D03: CONUS and China   D04: E. US

D02

D01

D03 - CHINA D03 - CONUS

D04 - EUS

• Period:  Met only: 2001/2050, at 4˚ × 5˚ & 1˚ × 1˚,
w different physics options

Gas and PM: 
1. 2001 Jan/Jul over D01-D04, w and w/o PM
2. 2001, 2010, 2020, 2030, 2040, 2050 over D01



2001 Monthly Mean Daily Precipitation (mm/day)

Jan.

SimulationObservation (CMAP)

Jul.

NMB = 11.5%

NMB = 5.7%



Direct Effects of PM2.5 on Shortwave Radiation

PM2.5 decreases shortwave radiation domainwide by up to -45% (global mean: -10%)

Absolute DifferenceJan. Jul.

Jan.

Jul.



Semi-Direct Effects of PM2.5 on Temperature at 2-m

PM2.5 decreases T2 over most areas up to -546% (global mean: -1.6%)

Absolute DifferenceJan. Jul.

Jan.

Jul.



Indirect Effects of PM2.5 on Precipitation

PM2.5 decrease precipitation over polluted regions by up to -82% (global mean: -5%)

Jan. Jul.

Jan.

Jul.

Absolute Difference



Indirect Effects of PM2.5 on Column CCN (S=1%)
Jan. Jul.

Jan.

Jul.

Absolute Difference

PM2.5 enhances CCN domainwide by up to 3340% (global mean: 478%)



Major Findings and Future Work
• GU-WRF/Chem demonstrates promising skills in reproducing observations
• Aerosol feedbacks to radiation, meteorology, and cloud microphysics

– Aerosols decrease shortwave radiation by up to -45% (global mean: -10%)
– Aerosols decrease NO2 photolysis rate by up to -52% (global mean: -11%)
– Aerosols decrease near-surface temperature by up to -546% (global mean: -1.6%)
– Aerosols decrease PBL height by up to -39% (global mean: -1.7%)
– Aerosols increase to CCN by up to 3340% (global mean: 478%)
– Aerosols increase to CDNC by up to 5751% (global mean: 318%)
– Aerosols decrease precipitation by up to -82% (global mean: -5%)

• Simulated aerosol, radiation, and cloud properties exhibit small-to-high sensitivity to 
nucleation and aerosol activation parameterizations

– Higher sensitivity to nucleation parameterizations: PM mass and number, CCN, Precip 
– Higher sensitivity to activation parameterizations: AOD, COT, CDNC, LWP, Reff
– Small sensitivity:  OLR, GLW, GSW, SWDOWN, RSWTOA, CF

• Observations are needed to verify feedbacks, improve models, and reduce the 
uncertainties in simulated aerosol direct and indirect effects

• Use feedbacks to guide win-win emission control strategies for CC/AQ
– Isolate and quantify complex speciated feedbacks: GHGs, cooling and warming PM
– Assess the effectiveness of O3 and PM attainment plans under different future emission 

scenarios and a changing climate
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